An Arbitrary-Order Discontinuous Galerkin Method with One Unknown Per Element

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arbitrary High-order Discontinuous Galerkin Method for Electromagnetic Field Problems

In this paper, we present a time integration scheme applied to the Discontinuous Galerkin finite element method (DG-FEM, [1]) for the computation of electromagnetic fields in the interior of three-dimensional structures. This approach is also known as Arbitrary High-Order Derivative Discontinuous Galerkin (ADER-DG, [2, 3]). By this method, we reach arbitrary high accuracy not only in space but ...

متن کامل

Arbitrary High Order Discontinuous Galerkin Schemes

In this paper we apply the ADER one step time discretization to the Discontinuous Galerkin framework for hyperbolic conservation laws. In the case of linear hyperbolic systems we obtain a quadrature-free explicit single-step scheme of arbitrary order of accuracy in space and time on Cartesian and triangular meshes. The ADERDG scheme does not need more memory than a first order explicit Euler ti...

متن کامل

An Efficient High-Order Time Integration Method for Spectral-Element Discontinuous Galerkin Simulations in Electromagnetics

We investigate efficient algorithms and a practical implementation of an explicittype high-order timestepping method based on Krylov subspace approximations, for possible application to large-scale engineering problems in electromagnetics. We consider a semi-discrete form of the Maxwell’s equations resulting from a high-order spectral-element discontinuous Galerkin discretization in space whose...

متن کامل

An Optimal-Order Error Estimate for the Discontinuous Galerkin Method

In this paper a new approach is developed for analyzing the discontinuous Galerkin method for hyperbolic equations. For a model problem in R2, the method is shown to converge at a rate 0(hn+l) when applied with nth degree polynomial approximations over a semiuniform triangulation, assuming sufficient regularity in the solution.

متن کامل

A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives

In this paper, we develop a new discontinuous Galerkin (DG) finite element method for solving time dependent partial differential equations (PDEs) with higher order spatial derivatives. Unlike the traditional local discontinuous Galerkin (LDG) method, the method in this paper can be applied without introducing any auxiliary variables or rewriting the original equation into a larger system. Stab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2019

ISSN: 0885-7474,1573-7691

DOI: 10.1007/s10915-019-00937-y